Int. J. Heat Mass Transfer. Vol. 30, No. 12, pp. 2657-2661, 1987
Printed in Great Britain

0017-9310/87 $3.00+0.00
© 1987 Pergamon Journals Ltd.

A phase change problem with temperature-
dependent thermal conductivity and specific heat

D. L. R. OLIVER
Mechanical Engineering Department University of Toledo, Toledo, OH 43606, U.S.A.

and

J. E. SUNDERLAND
Department of Mechanical Engineering, University of Massachusetts, Amherst, MA 01003, U.S.A.

(Received 6 January 1987 and in final form 15 March 1987)

Abstract—A semi-analytic solution is obtained to model conduction heat transfer with phase change into

a semi-infinite slab, where the thermal conductivities and specific heats of both phases are a linear function

of the temperature. This model extends the model of a previous work to include temperature-dependent
specific heats.

INTRODUCTION

HEAT CONDUCTION problems with a concomitant
change of phase have received a great deal of study in
recent years. Due to the non-linear nature of phase
change problems, only a few analytic solutions to
such problems have been proposed. Perhaps the best
known of these analytic solutions is the Newmann
solution presented in Carslaw and Jaeger [1], which
presents a solution for heat transfer in a semi-infinite
slab with a phase change. More recent analytic analy-
ses of phase change problems include Tao [2], and
Fredrick and Greif [3].

The preceding solutions assumed that the thermal
properties of each phase were constant. When large
temperature differences are associated with heat trans-
fer, large variations may occur in the thermal prop-
erties of each phase. Imber and Huang [4] used an
integral method to predict heat transfer with phase
change and variable thermal properties to a semi-
infinite slab. Due to the limited accuracy of integral
methods, the solution of Imber and Huang is not
accurate enough for purposes such a computer code
verification.

Cho and Sunderland [5] used a modified error func-
tion to more accurately predict heat transfer to a semi-
infinite slab with variable thermal conductivity. How-
ever, their solution procedure assumed that the spec-
ific heat of each phase was constant and not a function
of the temperature. It is often the case that the tem-
perature induced variation in specific heats is as large
as the temperature induced variations in the thermal
conductivities. It is the intent of this work to extend
the work of Cho and Sunderland to include the effects
of variable specific heats.

PROBLEM STATEMENT

The present problem is identical to that proposed
in Cho and Sunderland with the single exception that
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both the thermal conductivity and the specific heat of
each phase is assumed to vary linearly with tempera-
ture. The reader is referred to Cho and Sunderland
for more details of the assumptions used in this work.

The basic equations for phase 1 and phase 2 are
respectively
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The boundary and initial conditions are

To=T, atx=0 3
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where T is the imposed temperature at the left-hand
boundary, T, and T, are the temperatures of phase 1
and phase 2, respectively, T;is the fusion temperature,
and S(z) is the phase change front location (see Fig.
1). The sign on the right-hand side of equation (4) is
positive for freezing and negative for melting.

Equation (1) may be transformed to the following
dimensionless ordinary non-linear differential equa-
tion:

d de, de,
S A+BO) G 2 +00) G =0 ®

where o, and f, are such that
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NOMENCLATURE
a thermal diffusivity € dummy variable
c specific heat n dimensionless coordinate, equation (12)
H latent heat of fusion 0 dimensionless temperature, equation
k thermal conductivity a1
S(r) phase change front coordinate A dimensionless phase change front
Ste  Stefan number, equation (19) coordinate
T temperature p density
t time ¢,s  modified error function (Appendix).
x spatial coordinate.
Subscripts
Greek symbols 0 atx=0
o specific heat coefficient, equations (9) land 2 phases | and 2, respectively
and (14) i initial
B thermal conductivity coefficient, f at the fusion (or melting) temperature.
equations (10) and (15)
¢y =co(1+a,0)) (9) and
ky =ko(1+5.6)) 10 }er;@z(n)z 1. (20)
and
Equations (8) and (13), with the above boundary con-
0=(T-T)IT:—To) a1 ditions may be shown (by direct substitution) to be
k satisfied b
01 (12) Y

X
=——’ a =‘.
1 2\/(a0|t) o Co1P1

Equation (2) may also be transformed into a similar
form

d dg |
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do,
x (1+06,) gt =0 (13)

where
a;, = @, P12 = Pa
a0 P (14)
c2 = Coa(1+a30,)
ky =ko(1+8,0,) (15)

A= S(t)/(2\/ (ag;9)) (4 1is a calculated parameter).

(16)
The boundary conditions on equations (8) and (13)
are
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0.(1) = 6>() = 6 (18)
d0, _  1+p,0,d0,

dn .121+ﬁ10f dn
where Ste is the Stefan number
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X
1 (1+ase)
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where ¢,;(n) is the modified error function (see the
appendix) and the six unspecified coefficients (y,, y,,
81, 04, 4, and g) are specified by the following relations :

7=t )
16,5 (A) = 0,0 (25)
614,54 =B,0; (26)
5.5, (A) 1—6; 1+ 8,0,
1,5 (D0, 14510,
l4a,e 55,0

1 + 261 —,4,(01 =2{(Ste0) (27)
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FiG. 1. Schematic of solution domain.

where

s ( (1+a,¢) )
s a(1+B,8))

The solution to the above equations is found iter-
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atively. First a value of ¢ is assumed in equation (23).
Then equations (24)—(27) are solved. The value of ¢ is
iterated upon until equation (27) is satisfied. A
Runge-Kutta scheme was used to evaluate the modi-
fied error functions (hence the use of the term ‘semi-
analytic”).
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FiG. 2. Dimensionless phase change location vs Stefan number.
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An error was found in equation (43) of Cho and
Sunderland (which corresponds to equation (27) of
the present work). Equation (43) of Cho and Sun-
derland was missing a single term which was required
for equation (43) to be in conformity with equation
(24) of Cho and Sunderland. With this change, equa-
tion (27) reduces to equation (43) of Cho and Sun-
derland if the specific heats are not a function of
temperature (o, and «, are zero).

The present solution procedure has been confirmed
by comparing special cases with the Newmann solu-
tion (constant thermal properties for each phase), and
with an unpublished numerical code which uses finite
differences to solve equations (1) and (2) directly.

RESULTS AND DISCUSSION

Perhaps the most interesting calculated parameter
related to phase change problems is the location of
the phase change front. The location of the phase
change front is given by

S() = 24/ (@01

On Fig. 2 the dimensionless phase change location,
A, is plotted as a function of the Stefan number (Ste),
for three special cases of a, and «,. For large Stefan
numbers, the dimensionless phase change location
approaches a constant value. As the Stefan number
decreases, the dimensionless phase change location
asymptotically approaches a value which may be
derived assuming a quasi-steady state temperature
profile

. [(2+ﬂ.6f) 0, Ste

12
m 4 ] , Ste« 1. (28)

From the above analysis it is clear that including
the effects of temperature dependence of the specific
heat are most important at low values of the dimen-
sionless heat of fusion. At higher values of the
heat of fusion (low values of Ste), the variations in
the thermal conductivity are important, but the effects
of variable specific heats diminishes.
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APPENDIX: MODIFIED ERROR FUNCTION

Consider the second-order non-linear ordinary differential
equation

o (38,050 +2001 478,02 =0 (AD

with boundary conditions
¢,5(0)=0 (A2)
lim ,5(n) = 1. (A3)

The solution (approximated in this work by a Runge-Kutta
scheme) to equations (A1)~(A3) is defined as the modified
error function. The following theorem presents a result that
is useful in the solution of the phase change problem pre-
sented in the main body of this work.

The following function :

1+a8,
¢—%+@f%wﬂja+wj (A4)
where
_ (0, —80)
= l+a0, >—1, 14+a0,>0 (A5)
_ BB, —8,)
6—W>“1, l+ﬂ00>0 (A6)
satisfies the following equation :
d do dé
d_n(1+ﬂ9)d_n +2"(1+a9)d_n=0 (A7)
with boundary conditions
0(0) = 6, (A8)
lim 0(y) = 0. (A9)
n o

UN PROBLEME DE CHANGEMENT DE PHASE AVEC CONDUCTIVITE ET CAPACITE
THERMIQUE DEPENDANT DE LA TEMPERATURE

Résumé—On obtient une solution semi-analytique pour représenter la conduction thermique avec chan-

gement de phase dans un milieu semi-infini pour lequel les conductivités et les capacités thermiques des

deux phases sont des fonctions linéaires de la température. Ce modele élargit celui d’un travail antérieur
pour inclure la dépendance des capacités thermiques vis-a-vis de la température.
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EIN PHASENWECHSEL-PROBLEM MIT TEMPERATURABHANGIG_ER
WARMELEITFAHIGKEIT UND SPEZIFISCHER WARMEKAPAZITAT

Zusammenfassung—Es wird eine halbanalytische Losung zur Modellicrung des Wirmetransports durch
Wirmeleitung mit Phasenwechsel in einem halbunendlichen Spalt vorgestelit, in dem Wirmeleitfahigkeit
und Wirmekapazitit beider Phasen linear von der Temperatur abhingen. Dieses Modell erweitert ¢in
fritheres Modell durch Beriicksichtigung der Temperaturabhingigkeit der spezifischen Wirmekapazitit.

3AJAYA TEIVIONPOBOJHOCTH IIPH HAJIMUHMHK ®A30BOTO NEPEXOCJA C YUETOM
TEMIIEPATYPHOW 3ABUCUMOCTH TEIUIOEMKOCTU U KODDOULIUEHTA
TEIJIOIMMPOBOOHOCTHU

Amnotamsn—ITosy4eHo TMONyaHANMTHYECKOS DEIIEHAE MOJESBHON 3aJavd TEeIUIONPOBORHOCTH IIPH

$a30B80M nepexole B nOAYOECKOHEYHOM WIACTHHE B CyYae, KOria TeIUIONPOBOAHOCTh ¥ TEINIOEMKOCTH

ofenx ¢a3 aBAMOTCH JuHeHHbIME DyHKMAMHI TemnepaTypsl. [lannas Modens spasercs Oosee noano#,

YeM pacCMOTpEHHas B npeabinyiied paGore, MOCKONBKY YYMTHIBAET TEMIEPATYPHYIO 3aBHCHMOCTb TEN-
JIOEMKOCTH.
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