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Abstract-A semi-analytic solution is obtained to model conduction heat transfer with phase change into 
a semi-infinite slab, where the thermal conductivities and specific heats of both phases are a linear function 
of the temperature. This model extends the model of a previous work to include temperature-dependent 

specific heats. 

INTRODUCTION 

HEAT CONDUCTION problems with a concomitant 
change of phase have received a great deal of study in 
recent years. Due to the non-linear nature of phase 
change problems, only a few analytic solutions to 
such problems have been proposed. Perhaps the best 
known of these analytic solutions is the Newmann 

solution presented in Carslaw and Jaeger [1], which 
presents a solution for heat transfer in a semi-infinite 
slab with a phase change. More recent analytic analy- 
ses of phase change problems include Tao [2], and 
Fredrick and Greif [3]. 

both the thermal conductivity and the specific heat of 
each phase is assumed to vary linearly with tempera- 
ture. The reader is referred to Cho and Sunderland 
for more details of the assumptions used in this work. 

The basic equations for phase 1 and phase 2 are 

respectively 

The preceding solutions assumed that the thermal 
properties of each phase were constant. When large 
temperature differences are associated with heat trans- 
fer, large variations may occur in the thermal prop- 
erties of each phase. Imber and Huang [4] used an 
integral method to predict heat transfer with phase 
change and variable thermal properties to a semi- 
infinite slab. Due to the limited accuracy of integral 
methods, the solution of Imber and Huang is not 
accurate enough for purposes such a computer code 
verification. 

x > S(t). (2) 

The boundary and initial conditions are 

TO = T, at x = 0 (3) 

k,z--k,g= ip,H$ atx=S(t) (4) 

T, = T, = Tf at x = S(t) (5) 

Cho and Sunderland [5] used a modified error func- 
tion to more accurately predict heat transfer to a semi- 
infinite slab with variable thermal conductivity. How- 
ever, their solution procedure assumed that the spec- 
ific heat of each phase was constant and not a function 
of the temperature. It is often the case that the tem- 
perature induced variation in specific heats is as large 
as the temperature induced variations in the thermal 
conductivities. It is the intent of this work to extend 
the work of Cho and Sunderland to include the effects 
of variable specific heats. 

lim T, = T, (6) x-03 

T, = T, and S(t)=0 at t=O (7) 

where TO is the imposed temperature at the left-hand 
boundary, T, and T, are the temperatures of phase 1 
and phase 2, respectively, Tris the fusion temperature, 
and S(t) is the phase change front location (see Fig. 
1). The sign on the right-hand side of equation (4) is 
positive for freezing and negative for melting. 

Equation (1) may be transformed to the following 
dimensionless ordinary non-linear differential equa- 
tion : 

~(1+8,o,)~+2~(l+a,B,)~= 0 (8) 
The present problem is identical to that proposed 

in Cho and Sunderland with the single exception that where CI, and PI are such that 
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NOMENCLATURE 

a thermal diffusivity E dummy variable 
C specific heat rl dimensionless coordinate, equation (12) 
H latent heat of fusion 0 dimensionless temperature, equation 
k thermal conductivity (11) 
S(t) phase change front coordinate 3, dimensionless phase change front 
Ste Stefan number, equation (19) coordinate 
T temperature density 
t time z+, modified error function (Appendix). 
X spatial coordinate. 

Subscripts 
Greek symbols 0 atx=O 

u specific heat coefficient, equations (9) 1 and 2 phases 1 and 2, respectively 
and (14) 

B thermal conductivity coefficient, t- 
initial 

at the fusion (or melting) temperature. 
equations (10) and (15) 

Cl = col(l+~lel) (9) 

k, = k,,(l +B,@,) (10) 

and 

0 = (T- T,)I(T, - T,) (11) 

X k 01 
r = 2Jca,,tj, a0, = p. 

COlPl 
WI 

Equation (2) may also be transformed into a similar 
form 

where 

a02 
a 12=-r 

sol 
PI*=; 

(14) 

cz = cozu +d*) 

k, = ko,U +Bzed (15) 

1 = S(t)/(2J(ao, t)) (I is a calculated parameter). 

(16) 

The boundary conditions on equations (8) and (13) 
are 

0,(O) = 0 (17) 

s,(n) = e,(n) = e, (18) 

de, 
-- ,,P-=21/Ste atn=l (19) 
drl 

k 1 +B*efde2 
f+Plef drl 

where Ste is the Stefan number 

Ste = (l+fi,Wco,lT,--01 
H 

and 

lim e,(q) = 1. 
‘I-L” (20) 

Equations (8) and (13), with the above boundary con- 
ditions may be shown (by direct substitution) to be 
satisfied by 

fwf) = 1 -u+w 

where &(q) is the modified error function (see the 
appendix) and the six unspecified coefficients (y ,, y2, 
6 ,, 6,, 1, and E) are specified by the following relations : 

%*(I -E) 

y2 = I+u*& (23) 

(24) 

(25) 

1 +C(*.s 9%,(i) 

1 -tBzaUl -9&T2(i>l 
= 2/(Ste Or) (27) k,, + 

01 
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where 

Phase 2 

X - Axis 

FIG. 1. Schematic of solution domain. 

atively. First a value of E is assumed in equation (23). . . 
Then equations (24k(27) are solved. The value of E IS 
iterated upon until equation (27) is satisfied. A 
Runge-Kutta scheme was used to evaluate the modi- 
fied error functions (hence the use of the term ‘semi- 

The solution to the above equations is found iter- analytic’). 

p12= 1, a,2= 1, c,2= I) e1 -0.5, 0, = 0,’ I. 

a2= I 

a2= 0 

a 2 = -0.5 

I .o 
Strfan Number (Ste) 

FIG. 2. Dimensionless phase change location vs Stefan number. 
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An error was found in equation (43) of Cho and Scientific Research/AFSC, United States Air Force, under 
Sunderland (which corresponds to equation (27) of contract F49620-85-C0013. 
the present work). Equation (43) of Cho and Sun- 
derland was missing a single term which was required 
for equation (43) to be in conformity with equation 1, 
(24) of Cho and Sunderland. With this change, equa- 
tion (27) reduces to equation (43) of Cho and Sun- 
derland if the specific heats are not a function of 2. 
temperature (LY, and t12 are zero). 

The present solution procedure has been confirmed 3. 
by comparing special cases with the Newmann solu- 
tion (constant thermal properties for each phase), and 
with an unpublished numerical code which uses finite 

4 
’ 

differences to solve equations (1) and (2) directly. 

5. 
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Perhaps the most interesting calculated parameter 
related to phase change problems is the location of 

APPENDIX: MODIFIED ERROR FUNCTION 

the phase change front. The location of the phase 
Consider the second-order non-linear ordinary differential 

change front is given by 
equation 

s(t) = 2a&,t). 
$1 +s+,$$ +2fJ(l +,&,)F = 0 (Al) 

On Fig. 2 the dimensionless phase change location, 
with boundary conditions 

1, is plotted as a function of the Stefan number (Ste), &a(O) = 0 (AZ) 

for three special cases of LY, and CQ. For large Stefan lim I#J&) = 1. (A3) 

numbers, the dimensionless phase change location 
‘I-m 

approaches a constant value. As the Stefan number 
The solution (approximated in this work by a Runge-Kutta 
scheme) to equations (Al)-(A3) is defined as the modified 

REFRENCES 

decreases, the dimensionless phase change location error function. The following theorem presents a result that 
asymptotically approaches a value which may be is useful in the solution of the phase change problem pre- 

derived assuming a quasi-steady state temperature sented in the main body of this work. 

profile 
The following function : 

a N (2+8143 of Ste 
[ (I+B,&) 4 1 ‘I’, Ste << 1, (28) 

From the above analysis it is clear that including 
the effects of temperature dependence of the specific 
heat are most important at low values of the dimen- 
sionless heat of fusion. At higher values of the 
heat of fusion (low values of Be), the variations in 
the thermal conductivity are important, but the effects 
of variable specific heats diminishes. 
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4 = ~cl+(~m-RJ~y6~ 

where 

a@,-00) > -1 
y= i+ae, 

, l+ae,>o 

,=B(e--eo)> -1 l+pe >o 
i+peO ’ 0 

satisfies the following equation : 

with boundary conditions 

e(o) = e0 

lim ecrl) = 8,. 
‘I-- 

UN PROBLEME DE CHANGEMENT DE PHASE AVEC CONDUCTIVITE ET CAPACITE 
THERMIQUE DEPENDANT DE LA TEMPERATURE 

R&urn&On obtient une solution semi-analytique pour rep&enter la conduction thermique avec chan- 
gement de phase dans un milieu semi-infini pour lequel les conductivit& et les capacitts thermiques des 
deux phases sont des fonctions linkaires de la temp&rature. Ce modele Blargit celui d’un travail ant&eur 

pour inclure la dipendance des capacites thermiques vis&vis de la tempirature. 

(A4) 

(A5) 

(A6) 

(A7) 

(A8) 

(A9) 
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EIN PHASENWECHSEL-PROBLEM MIT TEMPERATURABHANGIGER 
W~RMELEITF~HIGKEIT UND SPEZIFTSCHER W~RME~PAZIT~T 

Zusammenfassuog--Es wird eine halbanalytische L&sung zur Modellierung des W&metransports durch 
Warmeleitung mit Phasenwechsel in einem halbunendlichen Spalt vorgestellt, in dem WLrmeleitEihigkeit 
und Warmekapazitlt beider Phasen linear von der Temperatur abhlngen. Dieses Model1 erweitert ein 
ftiheres Model1 durch Berticksichtigung der Temperaturabhiingigkeit der spezifischen Wiirmekapazitiit. 

3AflAHA TEH~O~~BO~H~~ IIPM HAJIHYHA @A30BOI-0 I-IEPEXOJIA C YYETOM 
TEMI-IEPATYPHOH 3ABHCMMOCTH TEHJIOEMKOCTH H K03@@HHBEHTA 

TEIIJIOI-IPOBO~HOCTM 

Amno’ra~s-Honyreuo ilOJlYEUiiVIHTHW!CKOi? pcXJIeHHe MOneJlbHOii 3WaWi TtX"lOIlpOBOIIHOCTH flpli 

+a3oeoM nepexone B nony6ecxoHewo2 nnaCTHHe ~cnyYae,xor,~&a remonpoaonnocTb H Tennoehirmmb 

06e~1xCpas ff~nsio~c~~ nHHe~~~~~ t&yfi~u~nhsi Te~epaTyp~.~aH~a~ hsomznb mmsreTc~ 6onee nonsoii, 
‘IeM &XiCCMOT~HHa~ I3 n~~~y~e~ pa6ore, IIOCKOJibKy yqKTbl5aeTTeMne~TypHy~ 3aBRCHMOCTb Ten- 


